Development Overview Page 1 of 11

[Contents] [Previous_] [Next] [Index]

Chapter 2 .
Development Overview

This chapter is an introduction to the issues and processes that you will need to know about as you
write plug-ins. It outlines the steps in writing and implementing a plug-in code module for
Communicator.

For more information about particular processes described in this chapter, refer to Chapters 3
through 8.

e Writing Plug-ins

« Registering Plug-ins

« Drawing Plug-ins

» Handling Memory

« Sending and Receiving Streams

« Working with URLs

« Getting Version and Ul Information

« Displaying Messages on the Status Line

« Communicating with Java

« Building Plug-ins

« Installing Plug-ins

[Top]
Writing Plug-ins

DEFENDANT'S
- EXHIBIT

[fol

Once you decide what you want your plug-in to do, creating it is a simple process.

Blumberg No. 8114

Plan your plug-in. Decide on the services you want the plug-in to provide.

1. Decide on a MIME type and file extension for the plug-in. See "Registering Plug-ins."

2. Download and decompress the SDK. See "The Plug-in Software Development Kit."

3. Create the plug-in project. You can either start from the template provided for your operating
system in the source directory, or construct a plug-in project in your development environment
using SDK-provided files. You can use a variety of environments to create plug-ins.

4. Make the necessary changes and additions to the SDK files to provide plug-in functionality
and implement Plug-in API methods for basic plug-in operation. You'll find an overview of

htip://developer.netscape.com/docs/manuals/communicator/plugin/devov.htm 11/4/98

Development Overview Page 2 of 11

using Plug-in APl methods in this chapter. More information about each function is provided
in Chapters 3 though 8 of this guide.

Build the plug-in for your operating system. See "Building Plug-ins."

Install the plug-in in the plug-in directory for your operating system. See "Installing Plug-ins."

Test your plug-in and debug as necessary.

® Naow

Create an HTML page and embed the plug-in object. For information about the HTML tags to
use, see "Using HTML to Display Plug-ins." To see your plug-in in action, simply display the
HTML page that calls it in Communicator.

9. If you decide to use LiveConnect capabilities in your plug-in, your next step is to read
LiveConnecting Plug-ins with Java. Look at the View Source article, "Netscape Client
Plug-Ins," to see how the Plug-in API and LiveConnect fit together in a plug-in created with
Microsoft Visual C++.

You can avoid many development problems by working in stages and testing at each stage. In the
first stage, you create a plug-in project, edit the plug-in files as necessary, build the plug-in, and
install it. In the second stage, you add the special functionality that makes the plug-in unique. The
issues you will encounter are introduced in this chapter, and examined in more detail in Chapters 3
through 8.

[Top] [Writing Plug-ins]

Registering Plug-ins

Netscape Communicator identifies a plug-in by the MIME type it supports. When it needs to display
data of a particular MIME type, Communicator finds and invokes the plug-in that supports that type.
The data can come from either an pyggp tag in an HTML file (where the EMBED tag either
specifies the MIME type directly or references a file of that type), from a separate non-HTML file of
that MIME type, or from the server.

The server looks for the MIME type registered by a plug-in, based on the file extension, and starts
sending the file to the browser. Communicator looks up the media type, and if it finds a plug-in
registered to that type, loads the plug-in.

When it starts up, Communicator checks for plug-in modules in the plug-in directory for the platform
and registers them. It determines which plug-ins are installed and which types they support through a
combination of user preferences that are private to Communicator and the contents of the plug-ins
directory. You can see this information by choosing About Plug-ins from the Help menu (Window
and Unix) or "?" (Help) menu (Mac OS).

A MIME type is made up of a major type (such as application or image) and a minor type, for
example, ;nage/3peg- If you define a new MIME type for a plug-in, you must register it with IETF
(Internet Engineering Task Force). Until your new MIME type is registered, preface its name with
"x-", for example, jnage/x-nwim- FOr more information about MIME types, see these MIME RFCs:
RFC 1521: "MIME: Mechanisms for Specifying and Describing the Forms of Internet Message
Bodies" and RFC 1590: "Media Type Registration Procedure."

» Mac OS
« MS Windows ’ -

http://developer.netscape.com/docs/manuals/communicator/plugin/devov.htm 11/4/98

Development Overview Page 3 of 11

+ Unix

[Top] [Registering Plug-ins]

Mac OS

On the Mac OS platform, the pj q- 155 folder is located in the same folder as the Communicator
application. Plug-ins are identified by file type ygp;,. When Communicator starts up, it searches
subfolders of the p},,4-1ns folder for plug-ins and follows aliases to folders and ygpy, files. Plug-in
filenames must begin with yp.

The MIME types supported by a plug-in are determined by its resources. +grrs+ 12g should contain
a list of MIME types and filc extensions in alternating strings. For example:

str 128 MIME Type
String lvideo/quicktime
String 2mov, moov
String 3audio/aiff
String 4aiff

String 5Simage/jpeg
String 6jpg

Several other optional strings may contain useful information about the plug-in. Plug-ins must
support gpr#+ 12g but are not required to support any of these others:

* gTRé' 127 can contain a list of MIME type descriptions corresponding to the types in
'sTRE' 128- For example, this description list corresponds to the types in the previous
example: String 1: "QuickTime Video", String 4: "AIFF Audio", and String 5: "JPEG Image
Format."

* gTR#' 126 String | can contain a descriptive message about the plug-in. This message,
which is in HTML format, is displayed by Communicator in its "About Plug-ins" page. String
2 can contain the name of the plug-in, thus allowing the name the user sees to be different
from the name of the file on disk.

[Top] [Registering Plug-ins]

MS Windows

On Windows, the) 43 s directory is located in the same directory as the Communicator

application. You can also find this directory through the Registry. Communicator does not search
subdirectories. Plug-ins must have a 8.3 filename beginning with yp and ending with py .

The Windows version information for the plug-in DLL determines the MIME types, file extensions,
file open template, plug-in name, and description. In the MIME types and file extensions strings,

"o

multiple types and extensions are separated by the ", " character, for example:

video/quicktimelaudio/aiff|image/jpeg
For Communicator to recognize the plug-in, the version stamp of the plug-in DLL must contain the
following lines:

= [ile Extents: for file extensions

http://developer.netscape.com/docs/manuals/communicator/plugin/devov.htm 11/4/98

Development Overview Page 4 of 11
+ MIME Type: for MIME types
« Language: for language in use

In your development environment, set the language to "US English" and the character set to
"Windows Multilingual." The resource code for this language and character set combination is
040904E4.

[Top] [Registering Plug-ins]

Unix

On Unix, the 51 4gins directory is set by the environment variable NPX_PLUGIN pATH> Which

defaults to /usr/local/netscape/plugins, ~/.netscape/plugins: - Plug-in filenames must
begin with yp.

To determine the MIME types of the plug-ins, Communicator loads each plug-in library and calls its

required ypp _GetMIMEDescription €Y point. ypp _GetMIMEDescription Should return a string
containing the type, extension list, and type description separated by semicolons; for example,

image/xbm; xbm;X Bitmap-

Communicator also calls the plug-in's optional NPP_GetValue entry point to determine the plug-in
name and description.

The.calls 0 NPP_GetMIMEDescription and ypp Getvalue @It r.nadc for registration purposes only.
During registration, Communicator does not call any other plug-in entry points, and the plug-in
cannot call any Communicator entry points at all.

[Top] [Registering Plug-ins]

Drawing Plug-ins

Before drawing itself on the page, the plug-in must provide information about itself, set the window
or other target in which it draws, arrange for redrawing, and handle events.

A windowless plug-in can call the following Netscape methods to draw itself:

* NPN_ForceRedraw: Force a paint message for windowless plug-ins.

» NPN_InvalidateRect: Invalidate an area in a windowless plug-in before repainting or
refreshing.

* NPN_InvalidateRegion: Invalidate an area in a wmdowless plug-in before repainting or
refreshing.

Communicator calls these Plug-in methods:

* NPP GetValue: Query the plug-in for information.
« NPP_Print: Request a platform-specific print operation for the instance.
+ NPP_SetValue: Set Communicator information.

« NPP_SetWindow: Set the window in which a plug-in draws.

R

http://developer.netscape.com/docs/manuals/communicator/plugin/devov.htm 11/4/98

Development Overview Page 5 of 11

* NPP_HandleEvent: Deliver a platform-specific event to the instance.

The plug-in can call these Netscape methods to query and set information:

« NPN GetValue: Get Communicator information.

* NPN_SetValue: Set plug-in Communicator information.

For information about these processes, see Chapter 4, "Drawing and Event Handling." For a
reference entry that describes each function, see "Drawing Methods" in the API reference.

[Top] [Drawing Plug-ins]

Handling Memory

Plug-in developers can take advantage of the memory features provided in the Plug-in API to
allocate and free memory.

« Use the NPN_MemAlloc method to allocate memory from Netscape Communicator.

* Use the NPN_Mem[ree method to free memory allocated with ypn Memalloc-

* Use the NPN_MemPFlush method to free memory (Mac OS only) before calling
memory-intensive Mac Toolbox calls.

For information about using these methods, see Chapter 7. "Memory." For a reference entry that
describes each function, see "Memory Methods" in the API reference.

[Top] [Handling Memory]

Sending and Receiving Streams

Streams are objects that represent URLs and the data they contain. A stream is associated with a
specific instance of a plug-in, but a plug-in can have more than one stream per instance. Streams can
be produced by Communicator and consumed by a plug-in instance, or produced by an instance and
consumed by Communicator. Each stream has an associated MIME type identifying the format of
the data in the stream.

Streams produced by Communicator can be automaticélly sent to the plug-in instance or requested
by the plug-in. The plug-in can select one of these transmission modes:
* Normal mode: Communicator sends the stream data sequentially to the plug-in as the data

becomes available.

* Random-access mode: Communicator allows the plug-in to request specific ranges of bytes
from anywhere in the stream. This mode requires server support.

* File mode: Communicator saves the data to a local file in cache and passes that file path to the
plug-in.

Streams produced by the plug-in to send to Communicator are like normal-mode streams produced
by Communicator, but in reverse. In Communicator's-normal-mode streams, Communicator calls the
plug-in to inform it that the stream was created and to push more data. In contrast, in streams

http://developer.netscape.com/docs/manuals/communicator/plugin/devov.htm 11/4/98

